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Abstract

An analysis has been developed in order to study the flow and heat transfer on a stretching surface in a rotating fluid, in the presence of
a magnetic field. The partial differential equations governing the non-similar flow have been solved numerically by using the implicit finite
difference and the difference-differential methods. The magnetic field increases the skin friction coefficient in thex-direction, but reduces
the skin friction coefficient in they-direction and the Nusselt number also decreases. On the other hand, the skin friction coefficients inx

andy directions increase, in general, with the rotation parameter, but the Nusselt number decreases. The Nusselt number also increases with
the Prandtl number.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords: MHD flow; Rotating fluid; Heat transfer; Stretching surface

1. Introduction

The study of flow and heat transfer in the boundary layer
induced by a surface moving with a uniform or non-uniform
velocity in an otherwise ambient fluid is important in sev-
eral manufacturing processes in industry which include the
boundary layer along material handling conveyers, the ex-
trusion of plastic sheets, the cooling of an infinite metalic
plate in a cooling bath. Glass blowing, continuous cast-
ing and spinning of fibers also involve the flow due to a
stretching surface. In recent years MHD flow problems have
become more important in industry. Since many metallur-
gical processes involve the cooling of continuous strips or
filaments. By drawing them in an electrically conducting
fluid in the presence of a magnetic field, the rate of cooling
can be controlled. Another application is in the purifica-
tion of molten metals from non-metalic inclusions by the
application of a magnetic field. The flow past a moving or
stretching surface in an ambient fluid differs from that of
the classical Blasius problem of flow past a stationary sur-
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face. The moving surface sucks the fluid and pumps it back
in the down-stream direction. Consequently, both the surface
shear stress and the heat transfer are significantly enhanced.
Sakiadis [1] studied the flow induced by a surface moving
with a constant velocity in an ambient fluid. The correspond-
ing heat transfer problem was considered theoretically and
experimentally by Tsou et al. [2] and Erickson et al. [3] and
experimentally by Griffin and Throne [4]. Crane [5] studied
the same problems as in [1], but assumed that the surface
velocity U varies linearly with the stream-wise distancex
(i.e., U = ax, wherea (a > 0) is the velocity gradient).
Gupta and Gupta [6] studied the heat and mass transfer for
the boundary layer over an isothermal stretching sheet sub-
ject to blowing and suction. Subsequently Chakrabarti and
Gupta [7] extended the above analysis to include the effect
of a magnetic field. Carragher and Crane [8] investigated the
heat transfer characteristics of a linearly stretching imperme-
able isothermal surface and obtained an analytical solution.
Dutta et al. [9] considered the effect of the uniform flux con-
dition on the heat transfer over a linearly stretching surface.
Grubka and Bobba [10] examined the effect of the non-
isothermal wall temperature, varying as a power-law with
the distancex, on the heat transfer over a stretching surface.
The effect of uniform suction and injection on the flow and
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Nomenclature

Cfx skin friction coefficient in thex-direction
Cfy skin friction coefficient in they-direction
Cp specific heat at constant pressure . kJ·kg−1·K−1

Cv specific heat at constant volume. . kJ·kg−1·K−1

f,g dimensionless similarity variables
g acceleration due to gravity . . . . . . . . 9.81 m·s−2

h heat transfer coefficient . . . . . . . . . W·m−2·K−1

Ha Hartmann number
k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

L characteristic length . . . . . . . . . . . . . . . . . . . . . . m
M magnetic parameter
Nux local Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . Pa, N·m−2

Pr Prandtl number
q heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

Re Reynolds number
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u,v,w velocity components . . . . . . . . . . . . . . . . . . m·s−1

Greek letters

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

β coefficient of thermal expansion . . . . . . . . . K−1

η, ξ transformed similarity variables
µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

λ rotation parameter
Ω angular velocity
ψ stream function. . . . . . . . . . . . . . . . . . . . . . m2·s−1

heat transfer from a stretching sheet was analysed by Dutta
[11] who also obtained an analytical solution. Chappadi and
Gunnerson [12] examined the flow and mass transport on
a surface which is moving with a uniform velocity in an
otherwise ambient fluid. Andersson [13] studied the flow
of an electrically conducting fluid on a linearly stretching
surface with a magnetic field and also obtained an analyt-
ical solution of the Navier–Stokes equations. The effect of
the variable thermal conductivity on the heat transfer in the
stagnation-point flow towards a linearly stretching sheet was
examined by Chiam [14], who obtained the solution of the
governing ordinary differential equations numerically. Va-
jravelu and Hadjinicolaou [15] carried out an analysis for
the flow and heat transfer of a viscous electrically conduct-
ing fluid over a vertical isothermal sheet which is linearly
stretched in the presence of a uniform free stream. The ef-
fects of the buoyancy force and internal heat generation or
absorption have been included in the analysis. The magnetic
field is applied normal to the surface. The boundary layer
equations given by a system of coupled non-linear ordinary
differential equations were solved numerically. Kumari and
Nath [16] investigated the effect of a magnetic field on the
stagnation-point flow and heat transfer of a viscous elec-
trically conducting fluid on a linearly stretching sheet. The
Navier–Stokes and energy equations governing the flow and
heat transfer were solved numerically. In most of the above
cases the surface velocity was taken to beU = ax, a > 0 and
self-similar solutions were obtained. The draw back of this
model is that it gives zero velocity at the slit. Jeng et al. [17]
have studied the non-similar flow over the surface which is
moving with the velocityU =U0(1+x/L), whereU0 is the
velocity atx = 0, x is the distance along the surface, andL
is the characteristic length, in an ambient fluid. Wang [18]
has considered the steady flow over a linearly stretching sur-
face (U = ax, a > 0) in a rotating fluid and has obtained a
self-similar solution. Recently, Takhar and Nath [19] have

extended the analysis of Wang [18] to include the effects
of the magnetic field and unsteadiness and obtained a self-
similar solution.

The magneto-hydrodynamicsof rotating electrically-con-
ducting fluids in the presence of a magnetic field is en-
countered in many important and interesting problems in
geophysics and astrophysics. It can provide explanations
for the observed maintenance and secular variations of the
geomagnetic field [20]. It is also relevant in solar physics in-
volved in the sunspot development, the solar cycle and the
structure of rotating magnetic stars [21].

The aim of this analysis is to study the flow and heat
transfer over a stretching surface in a rotating electrically-
conducting fluid in the presence of a magnetic field. The
parabolic partial differential equations governing the non-
similar flow have been solved by using an implicit finite-
difference scheme similar to that of Blottner [22]. These
equations have also been solved by using the difference-
differential methods [23], wherein we have to solve a
system of ordinary differential equations instead of partial
differential equations. The results have been compared with
those of Tsou et al. [2], Erickson et al. [3], Griffin and
Throne [4], and Jeng et al. [17].

Our problem can be regarded as the magnetic and rotating
counter-part of the non-similar problem considered by Jeng
et al. [17]. It can also be considered as the magnetic counter-
part of the similar-problem considered by Wang [18] with
the further difference that our problem is non-similar. Since
the rotation of the fluid increases the magnitude of the
secondary flow and the magnetic field decreases it, the
magnetic field can play an important role in retarding the
growth of the secondary flow as well as in reducing the heat
transfer rate. This also justifies the study of the effect of the
magnetic field on rotating flows. One possible application of
the present model is in self-cooled liquid metal blankets in
fusion reactors where the container is being rotated.
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2. Analysis

We consider the steady motion of a viscous incompress-
ible electrically-conducting fluid induced by the stretching
of a surface in thex-direction in a rotating fluid. The sur-
face coincides with the planez= 0 and it is being stretched
with velocityU =U0(1+ x/L). The fluid is rotating with a
constant angular velocityΩ about thez-axis. The stretching
distancex is also rotating with the fluid. The flow is three-
dimensional due to the presence of the Coriolis force. Fig. 1
shows the coordinate system, whereu, v andw are the ve-
locity components in the direction of Cartesian axesx, y
andz, respectively. The magnetic fieldB is imposed in the
z-direction. Since the flow is induced by stretching the sur-
face in thex-direction only, the velocity components,u, v,
w, and the temperatureT depend only onx andz. It is as-
sumed that the magnetic Reynolds numberRem = µ0σVL

is small, whereµ0 is the magnetic permeability,σ is the
electrical conductivity, andV andL are the characteristic
velocity and length, respectively. Under these conditions, it
is possible to neglect the induced magnetic field in com-
parison to the applied magnetic field. Since no applied or
polarization voltage is imposed on the flow field, the electric
field �E = 0. This corresponds to the case where no energy is
added to or extracted from the fluid by electrical means. The
surface is electrically insulated. Hence, the Lorenz magnetic
force depends only on the magnetic field. The viscous dissi-
pation, Joule heating, and the Hall effect are neglected. The
surface temperature and the fluid temperature at the edge
of the boundary layer are all constant. Under the forego-
ing assumptions, the boundary layer equations in the rotating
frame of reference are [17–19,24] given by:

ux +wz = 0 (1)

uux +wuz − 2Ωv = νuzz − ρ−1σB2u (2)

uvx +wvz + 2Ωu= νvzz − ρ−1σB2v (3)

uTx +wTz = αTzz (4)

The boundary conditions are given by:

u(x,0)=U(x), v(x,0)= 0

w(x,0)= 0, T (x,0)= Tw, x � 0

u(x,∞)= v(x,∞)= 0, T (x,∞)= T∞, x � 0

u(0, z)= v(0, z)= 0, T (0, z)= T∞, z > 0

(5)

Fig. 1. Coordinate system.

Here ρ and ν are the density and kinematic viscosity of
the fluid, respectively;α is the thermal diffusivity,U is the
surface velocity,Tw andT∞ are the wall temperature and
temperature at the edge of the boundary layer, respectively,
and the subscriptsx andz denote derivatives with respect to
x andz, respectively.

It is convenient to transform equations (1)–(4) from
(x, z) system to(ξ, η) system by using the following trans-
formations:

η= (
2ξν

)1/2
Uz, ξ =

x∫
0

U(x)dx

U(x)=U0(1+ x/L), ξ = x/L

ψ(x, z)= (
2νξ

)−1/2
f

(
ξ, η

)
r

T (x, z)= T∞ + (Tw − T∞)θ
(
ξ , η

)
v(x, z)=Ug

(
ξ, η

)
, u= δψ/δz=Uf ′(ξ, η)

ξ =U0Lξ(1+ ξ/2)

s1 = (
2ξ/U

)(
dU/dξ

) = 2ξ(1+ ξ/2)(1+ ξ)−2

λ=ΩL/U0, M = Ha2 = σB2L2/µ

ReL =U0L/ν, Pr = ν/α

(6)

Here (ξ, η) are the transformed coordinates;ψ and f
are the dimensional and dimensionless stream functions,
respectively;ξ is the dimensionless stream-wise distance;
f ′ andg are the dimensionless velocity components along
the x and y directions, respectively (i.e.,f ′ and g are,
respectively, the primary and secondary flow velocities);
θ is the dimensionless temperature;λ is the fluid rotation
parameter;M is the magnetic parameter which is the ratio
of the Hartmann number to the Reynolds number;Pr is the
Prandtl number;Ha is the Hartmann number;ReL is the
Reynolds number;s1, s2 ands3 are functions ofξ ; and prime
denotes derivative with respect toη.

These transformations also convert Eqs. (1)–(4) in dimen-
sionless form. Consequently, we find that (1) is identically
satisfied and Eqs. (2)–(4) reduce to:

f ′′′ + ff ′′ − s1f
′2 + 2λs2g −Ms2f

′

= s3ξ
(
f ′∂f ′/∂ξ − f ′′∂f/∂ξ

)
(7)

g′′ + fg′ − s1f
′g − 2λs2f ′ −Ms2g

= s3ξ
(
f ′∂g/∂ξ − g′∂f/∂ξ

)
(8)

Pr−1θ ′′ + f θ ′ = s3ξ
(
f ′∂θ/∂ξ − θ ′∂θ/∂ξ

)
(9)

where

s2 = (
2ξ/U0/U

2L
) = 2ξ(1+ ξ/2)(1+ ξ)−2

s3 = (
2ξ/UL

)
ξ−1 = 2(1+ ξ/2)(1+ ξ)−1

(10)

The boundary conditions (5) can be re-written as

f (ξ,0)= 0, f ′(ξ,0)= 1

g(ξ,0)= 0, θ(ξ,0)= 1

f (ξ,∞)= g(ξ,∞)= θ(ξ,∞)= 0

(11)
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It may be remarked that Eqs. (7) and (9) forλ =M = 0
(in the absence of fluid rotation and magnetic field) are
identical to those of Jeng et al. [17]. Forλ= 0, g(ξ, η)= 0
and Eq. (8) is not required. Also, Eqs. (7) and (9) forξ =
M = λ= 0 (self-similar flow) reduce to those of Tsou et al.
[2] and Erickson et al. [3] if we apply the transformations
η1 = 21/2η, f1(η1)= 21/2f (η), θ1(η1)= θ(η). Since Wang
[18] and Takhar and Nath [19] have assumed the wall
velocity U = ax, a > 0 instead ofU = U0(1 + x/L),
Eqs. (7)–(9) cannot directly be reduced to those of [18,19].

The quantities of physical interest are the skin friction and
heat transfer coefficients. The local skin friction coefficients
in thex andy directions are given by:

Cfx = −2µ(∂u/∂z)z=0/ρU
2
0

= −21/2Re−1/2
x (1+ ξ)2(1+ ξ/2)−1/2f ′′(0)

(12)
Cfy = −2µ(∂v/∂z)z=0/ρU

2
0

= −21/2Re−1/2
x (1+ ξ)2(1+ ξ/2)−1/2g′(ξ,0)

Similarly, the local heat transfer coefficient in terms of the
local Nusselt number can be expressed as

Nux = −x(∂T /∂z)z=0/(Tw − T∞)
= −21/2Re−1/2

x (1+ ξ)(1+ ξ/2)−1/2θ ′(ξ,0) (13)

where Rex = U0x/ν is the local Reynolds number;µ is
the coefficient of viscosity;Cfx and Cfy are the local
skin friction coefficients alongx andy directions (i.e.,Cfx
andCfy are the local skin coefficients for the primary and
secondary flows, respectively); andNux is the local Nusselt
number.

3. Finite-difference method

The parabolic partial differential equations (7)–(9) along
with (10) under the boundary conditions (11) have been
solved by using an implicit iterative tri-diagonal finite-
difference scheme similar to that of Blottner [22]. All the
first-order derivatives with respect toξ are replaced by two-
point backward difference formulae

∂S/∂ξ = (Si,j − Si−1,j )/0ξ (14)

whereS denotes the dependent variablef org or θ andi and
j are the node locations along theξ andη directions, respec-
tively. First, the third order partial differential equation (7)
is converted to a second-order partial differential equation
by substitutingf ′ = F . Then the second order derivatives
with respect toη for F , g andθ are discretized using the
three-point central difference formulae while the first-order
derivatives are discretized by employing the trapezoidal rule.
At each line of constantξ , a system of algebraic equations
is obtained. The nonlinear terms are evaluated at the pre-
vious iteration and the equations are solved iteratively by
using the Thomas algorithm (see Blottner [22]). The same
procedure is followed for the nextξ value and the equations

are solved line by line until the desiredξ value is reached.
A convergence criterion based on the relative difference be-
tween the current and the previous iterations is used. When
this difference reaches 10−5, the solution is assumed to have
converged and the iterative process is terminated.

4. Difference-differential method

The partial differential equations (7)–(9) with relations
(10) under the boundary conditions (11) are also solved
by using the difference-differential method [23]. In this
method, we have to solve a system of ordinary differential
equations instead of partial differential equations. Further,
these ordinary differential equations are converted to integral
equations and then solved by iterative numerical quadrature.
The results obtained by employing this method are nearly
the same as those obtained by using the finite-difference
scheme, but there is a significant reduction in the compu-
tation time.

First, we replace the derivatives with respect toξ at
ξ = ξi = ih (I = 0,1,2, . . .), whereh is a constant interval,
by using a four-point formula of Gregory–Newton. Eqs. (7)–
(9) can be replaced by the following ordinary differential
equations:

f ′′′
i + [

fi + s3(i/6)(11fi − 18fi−1 + 9fi−2 − 2fi−3)
]
f ′′
i

− [
Ms2 + s3(i/6)

(
11f ′

i − 18f ′
i−1 + 9f ′

i−2 − 2f ′
i−3

)]
f ′
i

− s1
(
f ′
i

)2 + 2λs2gi = 0 (15)

g′′
i + [

fi + s3(i/6)(11fi − 18fi−1 + 9fi−2 − 2fi−3)
]
g′
i

− [
s1gi + s3(i/6)(11gi − 18gi−1 + 9gi−2 − 2gi−3)

]
f ′
i

− 2λs2f ′
i −Ms2gi = 0 (16)

Pr−1θ ′′
i + [

fi + s3(i/6)(11fi − 18fi−1

+ 9fi−2 − 2fi−3)
]
θ ′
i

− [
s3(i/6)(11θi − 18θi−1 + 9θi−2 − 2θi−3)

]
f ′
i = 0 (17)

where

s1 = s2 = 2ih(1+ ih/2)(1+ ih)−2

(18)
s3 = 2(1+ ih/2)(1+ ih)−1

The boundary conditions (11) can be replaced by

fi(0)= 0, f ′
i (0)= 1

go(0)= 0, θi(0)= 1 (19)

f ′
i (∞)= gi(∞)= θI (∞)= 0

It is possible to express the solution of (15)–(17) under
conditions (19) at theith stationξi = ih in terms of integral
equations.

f ′
i = 1+

η∫
0

E(η)

η∫
0

R(η)

E(η)
dηdη
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−
[ ∞∫

0

E(η)

η∫
0

R(η)

E(η)
dηdη

]
G(η)

G(∞)
(20)

fi =
η∫

0

f ′
i dη (21)

gi =
η∫

0

E(η)

η∫
0

H(η)

E(η)
dηdη

−
[ ∞∫

0

E(η)

η∫
0

H(η)

E(η)
dηdη

]
G(η)

G(∞)
(22)

θi = 1+ Pr

η∫
0

E(η)

η∫
0

P(η)

E(η)
dηdη

− Pr

[ ∞∫
0

E(η)

η∫
0

P(η)

E(η)
dηdη

]
G(η)

G(∞)
(23)

where

E(η) = exp

[ η∫
0

{−fi − s3(i/6)(11fi − 18fi−1

+ 9fi−2 − 2fi−3
}

dη

]
(24)

R(η) = [
Ms2 + s3(i/6)

(
11f ′

i − 18f ′
i−1

+ 9f ′
i−2 − 2f ′

i−3

)]
f ′
i

+ s1
(
f ′
i

)2 − 2λs2gi (25)

G(η) =
η∫

0

E(η)dη (26)

H(η) = [
s1gi + s3(i/6)(11gi − 18gi−1

+ 9gi−2 − 2gi−3)
]
f ′
i

+ 2λs2f
′
i +Ms2gi (27)

P(η) = [
s3(i/6)(11θi − 18θi−1 + 9θi−2 − 2θi−3)

]
f ′
i (28)

The integral equations (20)–(23) are solved by employ-
ing an iterative numerical quadrature using the Simpson’s
rule. Eqs. (20)–(23) involvef (η), f ′(η), g(η) and θ(η)
at locationsξi−1, ξi−2, and ξi−3. When these quantities
are determined, we can getfi(η), f ′

i (η), gi(η) and θi(η)
from (20)–(23). The initial functionsf0(η), f ′

0(η), g0(η)

andθ0(η) at ξ =M = λ = 0 are the solutions of the ordi-
nary differential equations obtained from (7)–(9) withξ = 0.
These ordinary differential equations atξ =M = λ= 0 are
solved by using the Runge–Kutta–Gill method [25]. Sim-
ilarly, f1(η), f ′

1(η), g1(η), θ1(η) andf2(η), f ′
2(η), g2(η),

θ2(η) at ξ = ξ1 and ξ = ξ2 are obtained from equations
similar to (15)–(17), where the derivatives with respect to
ξ are, respectively, replaced by two-point and three-point

difference formulae instead of four-point formula used in
(15)–(17). After these starting solutions have been obtained,
we can solve (20)–(23). The convergence criterion is based
on the relative difference between the current and the pre-
vious iterations. When this difference becomes 10−5, the
solution is assumed to have converged and the iterative
process is terminated.

5. Results and discussion

Eqs. (7)–(9) with (10) under the boundary conditions (11)
have been solved numerically by using the finite-difference
and difference-differential methods as described earlier. In
order to assess the accuracy of our methods, we have com-
pared the velocity profileu/U0 = f ′(η) for ξ = 0 =M = λ

with the theoretical and experimental results of Tsou et al.
[2] in Fig. 2. It is in very good agreement with the theoret-
ical values. It also agrees well with the experimental values
near the wall. We have compared the local Nusselt number
Nux for ξ = 0 with the theoretical values of Erickson et al.
[3] and with the experimental values of Griffin and Throne
[4] in Fig. 3. The results are in good agreement with the
theoretical and experimental values when the wall velocity
U0 � 8.92 ft·s−1. Further, the local skin-friction coefficient
(Re1/2

x Cf x ) and the local Nusselt number (2Re−1/2
x Nux ) for

M = λ= 0 (i.e., in the absence of the magnetic field and ro-
tation of the fluid) are compared with those of Jeng et al.
[17]. The results are found to be in very good agreement.
The comparison is shown in Fig. 4. Also, the results obtained
by both the finite-difference and the difference-differential
methods are identical at least up to the third decimal place.
Hence, the comparison is shown only in a few cases.

The effect of the magnetic parameterM on the lo-
cal skin friction coefficients in thex and y directions,
2−1/2Re1/2

x Cf x , 2−1/2Re−1/2
x , Cfy , and the local Nusselt

number, 21/2Re−1/2
x Nux , for λ = 0.5, Pr = 0.7, 0� ξ � 3,

obtained by using both the finite-difference and the difference-
differential methods is shown in Figs. 5–7. Since the mag-
netic parameterM is multiplied byξ (see Eqs. (7), (8), (10)),

Fig. 2. Comparison of the velocity profileu/U0 for ξ =M = λ = 0, with
that of Tsou et al. [2].
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Fig. 3. Comparison of the local Nusselt numberNux for ξ =M = λ = 0,
with that of Erickson et al. [3] and Griffin and Throne [4].

Fig. 4. Comparison of the local skin friction coefficient inx direction

(Re1/2
x Cf x) and the local Nusselt number(2Re−1/2

x Nux) with those of
Jeng et al. [17] forλ=M = 0, Pr = 0.7.

Fig. 5. Effect of the magnetic parameterM on the local skin friction coef-

ficient in x direction (2−1/2Re1/2
x Cf x): — finite difference;◦ difference

differential.

Fig. 6. Effect of the magnetic parameterM on the local skin friction coef-

ficient in y direction (2−1/2Re1/2
x Cfy): — finite difference;◦ difference

differential.

Fig. 7. Effect of the magnetic parameterM on the local Nusselt number

(21/2Re−1/2
x Nux): — finite difference;◦ difference differential.

its effect vanishes atξ = 0 and increases significantly withξ .
For example, forM = 1,λ= 0.5, Pr = 0.7, the skin friction
coefficients in thex andy directions and the Nusselt number
increase by about 833%, 525% and 74%, respectively, asξ

increases from 0.5 to 3. The reason for a comparatively weak
dependence of the Nusselt number onM is that it does not
occur explicitly in the energy equation (see Eq. (9)). It may
be noted that in the range 0> ξ < 0.6, the Nusselt number
decreases forM � 2. This trend is due to the opposing ef-
fects of the parameters in this range. For a fixedξ , the skin
friction coefficient in thex-direction increases withM, but
the skin friction coefficient in they-direction and the Nusselt
number decrease. The reason for this trend is that the mag-
netic field has a stabilizing effect on the flow field. Hence
it enhances the velocity in thex-directionf ′(ξ, η), but re-
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Fig. 8. Effect of the magnetic parameterM on the velocity profiles inx
direction(f ′(ξ, η)).

Fig. 9. Effect of the magnetic parameterM on the velocity profiles iny
direction(g(ξ, η)).

duces the velocity in they-directiong(ξ, η) as is evident
from Figs. 8 and 9. Consequently, the skin friction coeffi-
cient in x direction increases withM, but the skin friction
coefficient in they-direction decreases. Since the boundary-
layer thickness decreases with increasingM, the velocity in
thez-direction decreases with increasingM. This reduction
in the velocity functionf increases the thermal boundary
layer thickness. Hence the Nusselt number decreases with
increasingM. Forξ = 3,λ= 0.5, Pr = 0.7, the skin friction
coefficient in thex-direction increases by about 96% asM
increases from zero to 4, but the skin friction coefficient in
the y-direction and the Nusselt number decrease, by about
57% and 30%, respectively.

The effect of the magnetic parameterM on the velocity
and temperature profiles (f ′(ξ, η), g(ξ, η), θ(ξ, η)) for λ=

Fig. 10. Effect of the magnetic parameterM on the temperature profiles
(θ(ξ, η)).

Fig. 11. Effect of the fluid rotation parameterλ on the local skin friction

coefficient inx direction(2−1/2Re1/2
x Cf x).

0.5, ξ = 1, Pr = 0.7 is given in Figs. 8–10. The velocity
profiles in thex andy directions decrease with increasing
M, but the temperature profiles are increased. This is due
to the reduction of the momentum boundary layers and
increase in the thermal boundary layer, with increasingM.

The effect of the fluid rotation,λ, on the skin fric-
tion coefficients and the Nusselt number (2−1/2Re1/2

x Cfx ,

2−1/2Re−1/2
x , Cfy , 21/2Re−1/2

x Nux ) for M = 1, Pr = 0.7 is
presented in Figs. 11–13. LikeM, λ is also multiplied by
ξ . Hence the effect ofλ vanishes atξ = 0 and increases
with ξ . Since the fluid rotation accelerates the fluid motion,
the momentum boundary layer is reduced. Hence the skin
friction coefficients are increased. Since the velocity in the
z-directionf , is reduced due to the reduction in the bound-
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Fig. 12. Effect of the fluid rotation parameterλ on the local skin friction

coefficient iny direction(2−1/2Re1/2
x Cfy).

Fig. 13. Effect of the fluid rotation parameterλ on the local Nusselt number

(21/2Re−1/2
x Nux).

ary layer thickness, the Nusselt number is also reduced. For
ξ = 3,M = 1, Pr = 0.7 the skin friction coefficients in thex
andy directions increase by about 29% and 206%, asλ in-
creases from 0.25 to 2 but the Nusselt number decreases by
about 21%. The reason for the strong dependence of the skin
friction in the y-direction onλ is that the secondary flow
g(ξ, η) is induced byλ (g(ξ, η) = 0 for λ = 0). It may be
noted that the skin friction in they-direction forλ= 2, is less
than that forλ= 1. This trend is attributed to the compitition
effects of various parameters. The effect of the Prandtl num-
ber Pr on the Nusselt number (21/2Re−1/2

x Nux ) for M = 1,
λ = 0.5, is displayed in Fig. 14. Since the Prandtl number
reduces the thermal boundary layer significantly, there is a
considerable increase in the heat transfer rate with increasing

Fig. 14. Effect of the Prandtl numberPr on the local Nusselt number

(21/2Re−1/2
x Nux).

Pr. Forξ = 3,M = 1, λ= 0.5, the Nusselt number increase
by about 430% asPr increases from 0.7 to 7.

6. Conclusions

The Nusselt number is found to be strongly dependent
on the Prandtl number and the suction (or injection) para-
meter. The skin friction coefficient in the case of primary
flow is strongly affected by the magnetic field, whereas the
skin friction coefficient for the secondary flow is strongly
dependent on the rotation parameter. The velocity profiles
in the primary and secondary flows are reduced by the
magnetic field. The skin friction coefficients for both the pri-
mary and secondary flows, in general, increase significantly
with the stream-wise distance. The results of the difference-
differential method are in excellent agreement with those of
the finite-difference method.
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